Multiple ultrafast, broadband 2D NMR spectra of hyperpolarized natural products.

نویسندگان

  • Patrick Giraudeau
  • Yoav Shrot
  • Lucio Frydman
چکیده

The combination of ex situ dynamic nuclear polarization (DNP) with nuclear magnetic resonance (NMR) leads to signal-to-noise enhancements of 10(3)-10(4) compared to conventional NMR. Ex situ DNP, however, is ill-suited for collecting the array of transients needed in 2D NMR spectroscopy. Spatially encoded single-scan 2D NMR methods can circumvent this drawback, yet these "ultrafast" experiments can cover spectral ranges of only approximately 20 ppm using conventional hardware. To deal with this limitation, we discuss here new spatial/spectral encoding strategies capable of folding (13)C resonances into the desired spectral windows. This new approach allows one to obtain--following a single hyperpolarization process--multiple 2D heteronuclear correlations arising from different (13)C regions. In combination with ex situ DNP, these principles enable the acquisition of HMBC and HSQC 2D NMR spectra on approximately 1 mM mixtures of natural products, characterizing with a high resolution sites spread over nearly 100 ppm bandwidths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates.

In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phas...

متن کامل

Hyperpolarized NMR of plant and cancer cell extracts at natural abundance.

Natural abundance (13)C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for meta...

متن کامل

Ultrafast multidimensional Laplace NMR for a rapid and sensitive chemical analysis

Traditional nuclear magnetic resonance (NMR) spectroscopy relies on the versatile chemical information conveyed by spectra. To complement conventional NMR, Laplace NMR explores diffusion and relaxation phenomena to reveal details on molecular motions. Under a broad concept of ultrafast multidimensional Laplace NMR, here we introduce an ultrafast diffusion-relaxation correlation experiment enhan...

متن کامل

An improved ultrafast 2D NMR experiment: towards atom-resolved real-time studies of protein kinetics at multi-Hz rates.

Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium ...

متن کامل

UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates.

Following unidirectional biophysical events such as the folding of proteins or the equilibration of binding interactions, requires experimental methods that yield information at both atomic-level resolution and at high repetition rates. Toward this end a number of different approaches enabling the rapid acquisition of 2D NMR spectra have been recently introduced, including spatially encoded "ul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 39  شماره 

صفحات  -

تاریخ انتشار 2009